Nuclear Energy

Lecture 11

Energy Law & Policy

Fall 2013

A Renaissance for Nuclear Power? Pre-Fukushima Nuclear Power

- Status of nuclear power in America:
 - Legacy of cost overruns
 - Three Mile Island 1979 Americans no longer assumed Nuclear Power was safe.
 - Chernoble 1986 more serious incident turned most of Europe against nuclear power.
 - No new power plant built in US since TMI.

Nuclear Holding Steady

U.S. Electricity Generation by Fuel, All Sectors thousand megawatthours per day

Note: Labels show percentage share of total generation provided by coal and natural gas.

Countries Generating Significant Amounts of Nuclear Energy

15 Countries Derive >25% Electricity From Nuclear Energy

Future of Nuclear Power?

- The world is clearly not waiting for the US to make any decisions regarding nuclear power.
- By 2030 if US intends to maintain 20% share of electricity production nuclear – we will need to have constructed 30 new reactors.
- Many more required if we wish to replace coal plants to reduce greenhouse gas and SOX and NOX emissions.

Revival?

- Recognition of large role in electricity generation.
- Role of nuclear in carbon reduction.
- Support from GOP
- Lack of major safety incident in past twenty five years -- until Fukushima.
- "New Economics" of nuclear.
 - Plants paid for currently very profitable

But are "New Economics" real?

- IEA says capital costs of \$2000/kw borderline economical
- Still produces toxic waste not accounted for
- Fissile materials generated create security risk.
- \$2000/kw price is reached only with "breathtaking" subsidies.

What are the subsidies?

- Price Anderson Act
 - Passed 1957 with 10 year sunset
 - 2005 extended 20 more years
 - Caps exposure at around 10 billion
 - Chernobyl cost estimated \$350 B
 - Estimates of around 2.5 cents/kW
- Subsidies to Legacy Plants
 - With restructuring, nuclear power costs were still too high, so "stranded costs" were passed through to ratepayers.
 - Around 7 cents/kW

Other Subsidies

- Special tax breaks
 - Accelerated depreciation
 - Depletion allowance
- Subsidized federal loans
- Waste Management deferring costs, federal subsidies for Yucca Mountain
- Decommissioning federal government has determined that ¼ of trust funds are insufficient to cover costs

Still Not Viable Without Subsidies

"Other energy technologies would be able to compete with nuclear power far more effectively if the government focused on creating an energy-neutral playing field rather than picking technology winners and losers."

> Union of Concerned Scientists February 2011

What Is Happening Now?

- Plumer article (Nuclear Option: An Atomic Bargain with the GOP):
 - GOP seeks to put nuclear power "into overdrive."
 - GOP critical to breaking deadlock on climate change
 - Result: democrats were ready to make a deal to get greenhouse gas legislation passed.

The Failure of Climate Change Legislation

- Constellation \$9 Billion Calvert Cliffs nuclear project at Chesapeake Bay is on hold.
 - Failure of climate change legislation blamed.
 - Other reasons cited:
 - Regulatory uncertainty
 - Recession
- Florida's NextEra Energy: "There's a lot of capital sitting on the sidelines just waiting for more regulatory clarity."

Fukushima – March 2011

- Radioactive Fallout
 - Meltdown of nuclear reactor
 - Radioactive release about 20% of Chernobyl
 - Still not contained -- radioactive water being leaked into Pacific Ocean
- Political Fallout
 - "I wonder if human beings can really control nuclear energy. I have now become an advocate calling for zero nuclear plants."
 - Former Japanese Prime Minister Junichiro Koizumi

What Happened

- Tsunami strike causes equipment failures, leading to loss of coolant and meltdown.
- No short term fatalities recorded from meltdown.
 - 18,500 killed by earthquake and tsunami
 - Uncertain long term health problems
- Leak of radioactive water in ocean discovered in July 2013

Lessons Learned

- Need better seawalls in tsunami zones
 - 14 foot seawalls were insufficient for major earthquake
- Back up batteries and diesel generation to power cooling, hydrogen recombiners are now standard.
- But are lessons learned enough?

Problem of Proliferation

- A 1 GW reactor produces 250 kg of plutonium per year.
 - About 175 kg of this is in the form of plutonium isotopes that can be reprocessed to replace 175 kg of Uranium 235 in a nuclear reactor.
- But: same 175 kg of plutonium isotopes can be used to make 25 nuclear warheads.

Albright, Annual Review of Energy (1988)

The Weinberg Dilemma

- Alvin Weinberg -- "abundant energy and nuclear proliferation may create a Malthusian vice."
- 1971: "The risk of CO2 accumulation inherent in the widespread use of coal is analogous to the risk of nuclear proliferation: both problems are global, uncertain, and could pose profound challenges to man's future."

Can Reprocessed Fuel Be Used to Create Weapons?

- Frank N. Von Hippel of Princeton University
 - Reprocessing spent nuclear fuel is too dangerous because it leads to the inevitable proliferation of nuclear weapons
- Alexander De Volpi Argonne National Lab -cannot make weapons from reprocessed plutonium.

Lovins -- Proliferation, Climate Change and Oil

- "Policy still rests on the fatally contradictory assumption that nuclear power is economical, necessary, and experiencing a revival. This makes the proliferation problem insoluble."
- "[P]roposals to expand nuclear subsidies -- whether to buy Senate climate-bill votes, or motivated by a sincere but mistaken belief that nuclear expansion will help protect climate -- will amount to lose-lose scenarios; that approach will only prop up a failed climate non-solution that also makes proliferation unstoppable. "

Response to Lovins

- "Because Lovins renders no substantive academic or acquired nuclear credentials, the analyses he presents ought to be held to a strict standard of scientific credibility, such as that described by the Daubert U.S. Supreme Court decision."
 - Alexander De Volpi

Other Problems of Nuclear Solution

- Nuclear Energy is more cost effective at large scales.
 - This solution runs counter to the trend towards distributed generation.
 - Requires continued reinvestment into the grid.
 - e.g. First Energy proposed \$3 B transmission upgrade

US Commercial Reactor Statistics

- 104 Operating Reactors

 9 Reactors Built Since 1968
 60 Year Operating Life (extended licenses)
- > 90% Capacity Factor (Coal – 71%, Wind – 21%, Solar – 15%)
- 12% of US Generating Capacity
- 20% of US Electricity supplied By Nuclear
- Estimate \$5.0 Billion Capital Cost

US Average Operating Cost Comparison

Nuclear Fission Process

- Fissile Material (U-235, Pu-239) Absorbs Neutron
 - Splits into Fission Products, 2.43 neutrons, energy

Pressurized Water Reactors – 69

Boiling Water Reactors – 35 operating

Nuclear Fuel

- For Self Sustaining Chain Reaction Require Enriched Uranium – 235
 - 3-4 % Pressurized Water Reactor
 - 7-10% Boiling Water Reactor
 - Enrichment Much Too Low For Nuclear Explosion
 - 181,000 Pounds Uranium Oxide in Reactor Core
 - 5,430 Pounds of U-235
- Refuel every 2 years, 1/3 fuel replaced
 - Only 1% U-235 Expended 1,207 Pounds of U-235 Remain in Each 1/3 Expended Fuel Block.

World Wide Nuclear Energy Factoids

Top 10 Nuclear Generating Countries 2008, Billion kWh

Source: International Atomic Energy Agency, U.S. is from Energy Information Administration

Reactor Types

- 437 Operating Reactors, 56 Under Construction
 - China 21; Russia 9; S. Korea 6; India 5 56 total worldwide
- Other Reactor Types
 - Heavy Water Reactors
 - Breeder Reactors 2 Operating
 - RBMK Soviet Design (Chernobyl)
 - Graphite moderator flammable
 - Water cooled presence of water slows reaction
 - No Containment

Nuclear History

History of the Global Nuclear Power Industry

Nuclear Waste

- Currently US Generated High Level Waste Inventory is around 40,000 metric tons.
 – Occupies volume of 140 ft X 140 ft X 100 feet
- Each reactor generates about 100 metric tons of fuel related (U-235, U-238,

Pu-239, fission products) waste per refueling.

 If all fuel assemblies discharged by all the operating reactors from now until 2030 were placed in one area they would occupy about 1 city block.

Yucca Mountain

- Nuclear Waste Policy Act 1982
 Establishes Fund and Assigns DOE
 Responsibility for Providing A Central Site
 \$35 Billion Paid In By Utilities Thus Far
- Yucca Mountain On Hold no funding in 2011/12
 - 20 years, \$8 Billion Spent To Date
 - EPA Standards 15 mrem/yr for first 10,000 years and 100 mr/year out to 1 million years

Yucca Mountain Concept

Interim Fuel Storage

- 70 Sites In US approved for interim storage of spent fuel.
- First 10 years in spent fuel pools.
- After decay heat has decayed off dry storage casks are used.
- NRC Risk Analysis finds no significant impact of on site storage including assessment of terrorist threat.

Spent Fuel Storage

Issues Associated With Discharged Fuel

- Very High Radiation Doses

 Gamma Radiation From Fission Products
- Thermal Heat Generation

 Referred To as Reactor Decay Heat
- Initially Stored In Spent Fuel Discharge Pools for Around 10 Years.
- Dry Storage Thereafter
- Note: NOT A Criticality/Nuclear Explosion Risk.

US Nuclear Power From The Past To The Future

- 1979 Three Mile Island Accident
 - Partial Core Meltdown due to loss of coolant
 - No Fatalities, No Injuries
- Shoreham \$6.0 Billion Never Operated
- Non-Standard Plant Design Added To cost
- Cumbersome Licensing Process driven by opposition to nuclear power constant change
- 50% Nuclear Plant Availability
- By Late 1980s all nuclear plant orders cancelled due to huge construction costs, plant delays, poor plant performance.

Westinghouse Advanced Light Water Design – AP1000

- Passive Safety Systems
- Standard Pre-Approved, Licensed Design
- Detailed computer aided, modularized design and construction planning greatly reduces construction costs

New Plant Construction Status

- China Has Ordered 4 AP1000 Plants 2 in actual construction
- China Negotiating To Build 12 more AP1000s.
- Worldwide 56 new reactor orders in some stage of processing.

Cost Considerations

- Best Guess For A New Construction AP1000 is \$5.0 Billion.
- Financing Construction is the major issue confronting utilities.
- Waste Management Costs Are Not Trivial – Estimate for Central Waste Storage is >\$100 Billion and counting.

Hydrogen Generation Ties To Nuclear Power

- Current Generation Reactors Only Produce Hydrogen Through Electrolysis.
- Next Generation Reactors (2020) Using Metal Cooling or Gas Cooling Will Operate At High Enough Temperatures to Support ThermoChemical Production of Hydrogen.
 - Pebble Bed Reactors Under Development Inherently Safe Helium Cooled Reactor Operates at 1,600°C.

Not Too Bright A Future

- Of 17 new plant applications only one has received loan guarantees.
- Exelon Corp. has abandoned plans for 2 reactors in Texas. – Nat Gas \$ cited
- Constellation Energy Turned Down Loan Guarantee of \$7.8 Billion.
- Finland project estimated at 3 Bil Euro now at 6 Bil Euro, with no end in sight.
- Progress Energy 2 Reactor Site Estimated at \$22 Bil.

Next Generation: Pebble Reactors

- 360,000 pebbles in core
- 3,000 pebbles handled daily
- 350 pebbles discharged daily

4.6 m→

Source: mit.edu

Summary

- 106 Operating US Reactor Plants Seem To Have Solved Operational Issues.
- Waste Management Requires Great Improvements In Approach and Cost.
- Cost Of New Plant Construction Is a Major Barrier For the Technology.
 - Need new break through in technology to reduce costs
 - Need to develop DG plants

Future of New Nuclear Power

- No nuclear power plant ever
 - been built on time and on budget
 - produced power to its original specifications
- Barring an extraordinary technology breakthrough nuclear energy is likely to be too costly to matter.

CSU Energy Policy Center

Thank you!